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Abstract- In this paper, we investigate the possibility of using 
the fractal dimension to characterise carotid atheromatous 
plaques from B-mode ultrasound images. The images were 
obtained from ten symptomatic and nine asymptomatic 
subjects. Symptomatic subjects included patients with previous 
history of cerebral events, whereas asymptomatic ones had no 
evidence of any cerebral symptoms prior to the time of the 
investigation. For each subject, a sequence of images was 
collected corresponding to 2-3 cardiac cycles. The boundary of 
the atheromatous plaque was defined by an expert in three 
different images of each sequence, corresponding to systole, 
diastole and a random phase of the cardiac cycle. The fractal 
dimension of each plaque was estimated using a new method, 
namely the k-th nearest neighbour method. The results showed 
that the values of the fractal dimension in the symptomatic 
group were significantly higher than those in the asymptomatic 
group. These results suggested that the fractal dimension, 
estimated from B-mode ultrasound images, could be used to 
discriminate between symptomatic and asymptomatic carotid 
atheromatous plaques.  
Keywords – B-mode ultrasound, carotid, atherosclerotic plaque, 
fractal dimension, kth nearest neighbour method 
 

I. INTRODUCTION 
 
Ultrasound imaging of the carotid artery is widely used in 

the diagnosis of carotid atherosclerosis as it allows non-
invasive assessment of the degree of stenosis as well as of 
plaque morphology, including plaque homogeneity/ 
heterogeneity, plaque echogenicity/echolucency, plaque 
texture and plaque surface characteristics. It has been 
demonstrated that the possibility that a carotid plaque 
produces a cerebral event (symptom), i.e. its instability, may 
be determined by the degree of stenosis [1], with plaques 
causing high degrees of stenosis more likely to produce 
symptoms. 

However, carotid plaques with relatively small degrees of 
stenosis have been reported to cause symptoms. Furthermore, 
due to the fact that the majority of symptoms occur in 
previously asymptomatic subjects, it is important to study 
additional parameters that may contribute to recognise and 
treat subjects (especially asymptomatic ones) at high risk of 
cerebral events.  

Plaque morphology, determined from ultrasound images of 
the carotid artery, may be related to the risk of clinical 
events. Homogeneous plaques are characterised by uniformly 
high- or medium-level echoes and are associated with stable 
plaques; heterogeneous plaques are associated with advanced 
stages of carotid plaque lesion [2]. Echogenic plaques reflect 
strongly the ultrasound signal, whereas echolucent ones have 
less reflecting ability. It has been shown that echolucent 
plaques, as evaluated by B-mode ultrasound, are more likely 

to lead to the development of neurological events than 
echogenic ones [3]. Analysis of digital images of carotid 
plaques allows assessment of plaque texture. First and second 
order statistical features extracted from carotid plaques may 
provide useful information about the correlation between 
texture and plaque composition [4]. 

In addition, the texture of biological tissues may be 
characterised using the fractal dimension [5]. For an image, 
the fractal dimension is a non-integer number between 2 and 
3 and is a measure of the roughness of its intensity surface. 
Experiments have demonstrated that the fractal dimension is 
highly correlated with the human perception of image 
texture; the rougher the texture, the larger the fractal 
dimension. 

In this paper, the fractal dimension was used as a texture 
feature in order to characterise carotid plaques from B-mode 
ultrasound images obtained from the two main types of 
patients with carotid atherosclerosis, namely symptomatic 
and asymptomatic. A recently proposed method, namely the 
kth nearest neighbour method, was used for estimating the 
fractal dimension [6].  

 
II. METHODOLOGY 

 
A. Subjects and Procedures for Acquisition of Images 
 

A total of 17 subjects, who were recruited from patients 
referred to the Irvine Laboratory, St Mary’s Hospital, London 
for neck arteries scanning, were selected for the study. The 
above population provided a total of 19 carotid arteries with 
an atherosclerotic plaque on the vessel wall (for 2 of the 
investigated subjects both carotid arteries were studied). 
Among these, 10 plaques were symptomatic (ages 50-85 
years, mean 67.9 years, 2 females) and 9 were asymptomatic 
(ages 50-90 years, mean 67.6, 6 females). Symptoms 
included stroke, hemispheric transient ischaemic attack and 
amaurosis fugax. The majority of the investigated plaque 
regions were located in the internal carotid artery, close to or 
exactly at the site of the carotid bulb. 

For each subject, a scan sequence was recorded with an 
ATL (Advanced Technology Laboratory) Ultramark 4 
Duplex scanner and a high resolution 7.5MHz linear array 
scanhead. Scanner settings (dynamic range 60dB, 2D grey 
map, persistence low, frame rate high) were set at the 
beginning of the recording and not altered during the 
procedure. These settings were common for all 
investigations. Carotid arteries were imaged in longitudinal 
section, as this section provides more information about the 
vessel wall. The sequences were recorded at a rate of 25 
frames/sec for 3 seconds during breathholding. The images 
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were transferred to a magnet optical disc and then copied to a 
compact disc. Then they were copied to a personal computer 
where the analysis was performed. 

Each sequence was reviewed and two frames 
corresponding to diastole and systole were selected by an 
expert. Furthermore, for each subject, a random frame, 
namely the first frame, of the sequence was also included in 
the study. The reason for including a random frame in the 
study was to examine whether the value of the fractal 
dimension was dependent on the phase of the cardiac cycle.  

For each of the three selected frames, histogram 
equalization was performed and the outline of the plaque 
region was drawn by an expert. Histogram equalization 
improves visualization of the plaque and thus enables the 
expert to draw the plaque boundary. The plaque boundary on 
the histogram equalized image was then applied on the 
original image to define the region for which the fractal 
dimension would be estimated. It must be noted that the 
fractal dimension was estimated for the original image, not 
the equalized one. Fig. 1 shows a typical example of a frame 
and its histogram equalized version where the plaque was 
outlined.  

 
B. The kth-nearest neighbour method 
 

Several methods have been proposed for the estimation of 
the fractal dimension (FD) of images. In this paper, a method 
for estimating the fractal dimension, namely the k-th nearest 
neighbour, was applied. The reason for selecting this method 
was based on the fact that existing methods for estimating FD 
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Fig 1. Typical example of ultrasound image of a carotid artery (a) and its 
equalised version (b).  

 
such as the box-counting method [7], underestimate the true 
fractal dimension for relatively high values (e.g. above 2.6), 
mainly due to the discretization of the image domain and the 
quantization of the grey levels. Furthermore, as opposed to 
other widely used methods (e.g. the power spectrum method), 
the existence of an underlying model for the available data is 
not a prerequisite for the proposed method. 

The kth nearest neighbour method is the main 
representative of the so-called fixed - mass methods. In 
particular, Badii and Politi [8] considered moments of the 
average distance to the kth nearest neighbour and 
recommended keeping k  fixed and computing a dimension 
function, ( )γD , from the scaling of average moments of kr  
with the total number of points N  as follows:  

( ) )(//~ γγγ D
k Nkr ><  (1) 

It can be shown that fractal dimension is the fixed point of 
the dimension function, ( )γD , that is ( ) FDFDD =  [8]. 

The proposed procedure for the estimation of the fractal 
dimension of a grey level image, ( )yxI , , with size yx NN ×  
pixels, using (1), for maxmin ,, kkk K=  ( k  integer), is as 
follows: 

Step 1. An initial value of γ , 0γ , is chosen arbitrarily. 
Since the fractal dimension of an image is between 2 and 
3, it would be better to choose 0γ  in this range, e.g. 

5.20 =γ . However, the performance of the method is not 
affected significantly by the initial value of γ  [6]. 

Step 2. Each pixel of the image with spatial co-
ordinates ( )yx,  is considered as a point of R3 with co-
ordinates ( )( )yxIyx ,,, . For each such point, which will 
be referred as a reference point, its mink  up to maxk  

nearest neighbours are recorded as 
mkr  ( Nm ,,2,1 K= ), 

where yx NNN ×=  denotes the total number of the 
pixels in the image. 

Step 3. For K,2,1=n  the following recursive 
relations: 
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are applied until convergence is achieved. 1−ns  is the 
slope of the best fitting line (using linear regression) at 
the points ( )( )>< −1log,/log n
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was determined using the Euclidean norm. 
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The process can be terminated when the fractional range 

between 1−nγ  and ( )nD γ , 
( )
( )[ ]1

1

5.0 −

−

+
−

nn

nn

D
D

γγ
γγ

, is smaller 

than some predefined tolerance (e.g. 510− ). Experiments 
have shown that just two or three iterations are sufficient for 
the calculation of the fractal dimension of images [6]. 
The calculation of the distances of each point from its kth 
nearest neighbours can be carried out using a fast nearest 
neighbour search based on binary space partitions (kd-trees, 
see [9]). To further accelerate the calculation of the distances, 
an approximate nearest neighbour search [10] can be 
performed, i.e. only queries for points whose distance is at 
most ( )ε+1  times larger than the distances of each point 
from its kth nearest neighbours are considered. Additionally, 
instead of using all the pixels of the image as reference 
points, only a number of refN  randomly chosen pixels 
( NN ref < ) can be used as reference points for calculating 

>< γ
kr , leading to further acceleration without significant 

loss of the accuracy of the calculation. 
 

III. RESULTS 
 

The values of the fractal dimension (mean value ± standard 
deviation) for each of the three investigated frames of each 
sequence are listed in Table I. The initial value for γ  was 

5.20 =γ . The range of k  values was chosen heuristically to 
be between 50min =k  and 150max =k . The parameter ε  was 
set to zero, which means that the distances from the exact 
nearest neighbours were taken into account and finally all the 
pixels belonging to the plaque region were used as reference 
points. 

A two-tailed Student's t-test was performed in order to 
determine whether there was a statistically significant 
difference between the fractal dimension of the symptomatic 
and the asymptomatic subjects. The null hypothesis was that 
the two groups did not differ as per the fractal dimension. 
The test showed that the null hypothesis could be rejected 
with significance level 01.0<p  (Table I). This finding was 
independent of the phase of the cardiac cycle. The 
corresponding 95% confidence intervals for the mean value 
of the fractal dimension of the plaque region of the two 
populations are shown in Table II. 

 
TABLE I 

FRACTAL DIMENSION FOR SYMPTOMATIC AND 
ASYMPTOMATIC SUBJECTS 

 Diastole Systole Random frame 

Symptomatic 2.320±0.041 2.313±0.078 2.303±0.062 

Asymptomatic 2.159±0.111 2.185±0.048 2.162±0.093 

p-value 0.000558 0.000493 0.001080 

 
 

 
 

TABLE II 
LOWER AND UPPER LIMITS OF THE 95% CONFIDENCE INTERVALS 

FOR THE MEAN VALUE OF THE FRACTAL DIMENSION OF THE 
PLAQUE REGIONS FOR THE TWO POPULATIONS. 

  Systole Diastole Random 
frame 

Lower 
limit 2.257 2.290 2.259 

Symptomatic 
Upper 
limit 2.369 2.349 2.348 

Lower 
limit 2.148 2.074 2.090 

Asymptomatic 
Upper 
limit 2.222 2.244 2.234 

 
In order to assess whether there was a difference of the 

fractal dimension estimations between the different phases, a 
one-way repeated-measures analysis of variance (RM-
ANOVA) was performed [11]. The null hypothesis was that 
the independent variable (i.e. the phase) had no effect on the 
estimation of the fractal dimension of the plaque regions.  

The results of the test are listed in Table III. The first 
column of the Table presents the sources of variation of the 
fractal dimension estimations. One source of variation was 
the independent variable manipulation (phase): 19 of the 
estimations were obtained during systole, 19 during diastole 
and 19 during an arbitrary phase (first frame). Another source 
of variation was the individual differences: the mean value of 
the three fractal dimension estimations. The final component 
of the total variability is due to the so-called phase × subjects 
interaction and it describes how the patterns of the fractal 
dimension estimations of the subjects are affected by the 
levels of the independent variable (phase).  

The quantification of the various sources of variation is 
achieved by the use of the sum of squares (SS), which is an 
abbreviation for the “sum of the squared deviations from the 
mean”. The values for the sum of squares for the three 
components are listed in the second column of the Table III. 
The third column of the Table III contains the degrees of 
freedom (df) for each source of variation. The column 
labelled as MS presents the mean of squares, which is the 
ratio of the sum of squares to the degrees of freedom. Since 
the mean of squares corresponding to the second component 
of variation is not used for further calculations, therefore, it is 
not necessary to include it in the Table III.  

 
TABLE III 

ONE-WAY RM-ANOVA FOR ASSESSING IF THE MEAN VALUES 
OF THE FRACTAL DIMENSION OF THE PLAQUE REGIONS ARE 

DIFFERENT BETWEEN THE THREE PHASES. 
Source of 
variation SS df MS F p-value 

Phase (P) 0.00247 2 0.001234 0.366728 0.695557 
Subjects (S) 0.46450 18 -   

PxS 0.12114 36 0.003365   
Total 0.58811 56    
 
The systematic effect of the phase on the fractal 

dimension estimations is quantified by the so called F-ratio, 
which is the ratio of the mean squares of the first component 
of variation to the mean of squares of the third component of 
variation. The p-value corresponding to the computed F-ratio 
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(0.695557) indicates that the null hypothesis cannot be 
rejected. Consequently, the phase had no systematic effect on 
the estimation of the fractal dimension of plaque regions and 
the observed differences can be attributed to chance alone. 

Furthermore, a well-known algorithm of unsupervised 
learning, namely the fuzzy c-means algorithm [12], was 
applied for the clustering of the input data into two clusters. 
In particular, for each subject, a feature vector was formed 
using the three values of the fractal dimension estimated 
during the three phases. Thus, a total of 19 feature vectors 
were formed, which were the input of the algorithm. On 
output, the centres of the two clusters (Cluster 1 for the 
symptomatic subjects and Cluster 2 for the asymptomatic) 
and the values of the membership function for each vector 
were obtained. Each vector was assigned to the cluster 
corresponding to the maximum of its membership function 
values. All the feature vectors obtained by the asymptomatic 
subjects formed cluster 2, whereas 9 out of 10 of the feature 
vectors formed cluster 1. Thus the percentage of correct 
classification was 94.7%.  

  
V. CONCLUSIONS 

 
In this paper, the fractal dimension of atheromatous 

plaques of the carotid arteries of two groups of subjects, 
symptomatic and asymptomatic was estimated. The results 
indicated a significant statistical difference of the fractal 
dimension of the plaques extracted from symptomatic and 
asymptomatic subjects, for both the diastole and the systole 
as well as for the first frame of the sequence. No significant 
difference was observed for the inter-phase comparison of the 
fractal dimension estimations. Therefore, it is concluded that 
the fractal dimension can be calculated for any phase of the 
cardiac cycle. 

In order to establish the fractal dimension as a determinant 
of carotid plaque instability, a larger group of both types of 
plaques should be investigated. This larger-scale study will 
be based on recruitment of patients according to a pre-
defined protocol, in which patient clinical history and 
procedures for image acquisition are standardised and 
described in detail. The patients whose plaques are 
interrogated will then be followed-up at regular intervals in 
order to determine a subgroup of asymptomatic subjects that 
will develop cerebral events after the first investigation. The 
value of the fractal dimension within this subgroup of 
asymptomatic subjects, if different from that of the rest of the 
asymptomatic group, will allow the vascular surgeon to select 
those asymptomatic subjects who need carotid 
endarterectomy. 
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